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Abstract
Models of quantum computing rely on transformations of the states of a
quantum memory. We study mathematical aspects of a model proposed by
Wu in which the memory state is changed via the scattering of incoming
particles. This operation causes the memory content to deviate from a pure state,
i.e. induces impurity. For nonrelativistic particles scattered from a two-state
memory and sufficiently general interaction potentials in (1+1) dimensions,
we express impurity in terms of quaternionic commutators. In this context,
pure memory states correspond to null hyperbolic quaternions. In the case
with point interactions, the scattering process amounts to appropriate rotations
of quaternions in the frequency domain. Our work complements previous
analyses by Margetis and Myers (2006 J. Phys. A 39 11567).

PACS numbers: 03.65.−w, 03.67.−a, 03.65.Nk, 03.65.Yz, 03.67.Lx, 03.65.Pm

1. Introduction

Ideally, quantum computations are performed via transforming pure states of a physical
system called ‘quantum memory’ to other pure states (see, e.g., [1–6]). In this context,
memory states transform unitarily. In most systems pure states may degrade to mixed states.
This phenomenon amounts to decoherence. A well-known kind of decoherence is caused by
extraneous influences unrelated to memory operations [6, 7].

Recently, Wu [8–10] introduced spatial variables in quantum computations by viewing
the quantum memory as a scatterer: incoming particles are scattered from the memory and
change its content. In this setting, unitary transforms apply to the combined system of
memory and particles. The memory states do not transform unitarily unless the incoming
signal is ‘admissible’. In one-space dimension, single-frequency waves are admissible [9].
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In practice, however, incoming signals are pulses of finite duration. Thus, their use leads to
additional decoherence, which we term ‘impurity’. This kind of decoherence is connected
specifically to memory operations, as was first discussed in [9]. The impurity of a two-state
memory was analyzed via the relativistic [9] and nonrelativistic [11] Schrödinger equations.
In [11], the memory is allowed to interact with incoming particles only at one point by the use
of the pseudo-potential derived in [8].

In the present paper, we extend the nonrelativistic formulation of [11] to reasonably
general interaction potentials in one-space dimension. Our starting point is to model the
interaction potential as an imaginary quaternion [12–15]. In this formalism, the impurity
measure of [11] is expressed in terms of a norm that depends on quaternionic commutators
(see proposition I of section 2.2). In this context, pure states correspond to null hyperbolic
quaternions [16].

For point interactions, scattering from the memory admits a geometric interpretation in
our framework: during the scattering process appropriately defined quaternions are rotated
in the frequency domain. This simple picture motivates our approach, offers additional
insight into properties of the impurity measure used in [11], and is amenable to computations.
Our formalism, which aims to describe impurity within the traditional setting of quantum
mechanics, is distinct from the known notion of ‘quaternionic quantum mechanics’ discussed
in [17].

The analysis of the overall memory transformation, i.e. the detailed change of the memory
state by scattering, lies beyond our present scope. Aspects of this transformation are described
extensively in [8, 9]. Noteworthy is the possibility of constructing an incoming wavefunction
and interaction potential that always leave the memory content undistorted, with zero impurity.
An example of this case for point interactions is mentioned in section 4.1. Such cases are
viewed as too special for our purposes and therefore are not studied any further in this paper.

Our formulation in terms of quaternions is an application of the correspondence between
quantum memory operations and special relativity pointed out in [18, 19]. This correspondence
relies on an isomorphism between Hermitian 2 × 2 matrices and the four-dimensional space
R4. Notably, the work in [18, 19] is concerned with the measurement of pure states and does
not address issues of impurity.

Scattering as an inherent mechanism of decoherence has been studied in the context of
various physical systems including electrons and quantum dots interacting with phonons, e.g.
[20, 21]. In these settings use is made of perturbation theory: matrix representations of the
interaction in momentum states are invoked without direct recourse to the time-dependent
Schrödinger equation. Our approach is non-perturbative, based on solving the time-dependent
Schrödinger equation with two coupled channels.

Our paper is organized as follows. In section 2, we formulate the problem of impurity for
a two-state quantum memory as a scattering problem with two coupled channels and general
interaction potential in one-space dimension: in section 2.1 we formulate the equations of
motion by treating a local interaction potential as a quaternion; in section 2.2, we express the
time evolution of the impurity measure used in [11] in terms of commutators of quaternions;
and in section 2.3, we describe an extension of this formulation to nonlocal interaction
potentials. In section 3, we describe the general solution by invoking discrete schemes for
amplitudes of suitable Fourier transforms in time. In section 4, we revisit the case with point
interactions by use of the present formalism: in section 4.1 we focus on even wavefunctions;
and in section 4.2 we treat odd wavefunctions. In section 5, we summarize our results
and discuss open problems. Throughout the analysis we apply units with h̄2/(2m) = 1
where m is the particle mass and denote quaternions by boldface symbols distinct from
vectors.

2



J. Phys. A: Math. Theor. 41 (2008) 065307 D Margetis and M G Grillakis

2. Formulation

In this section, we describe the equations of motion for a general interaction potential.
Subsequently, we derive an explicit formula for the impurity used in [11].

2.1. Equations of motion

For a two-state quantum memory [8], the field of the particle-memory system is the 2 × 1
(column) vector

�ψ(x, t) =
[
ψ1(x, t)

ψ2(x, t)

]
−∞ < x, t < +∞, (1)

where ψj(x, t) (j = 1, 2) are scalar, square integrable functions in (1+1) dimensions. The
vector field �ψ solves the Schrödinger equation,

i∂t
�ψ = −∂2

x
�ψ − iq(x) �ψ, (2)

where −iq(x) represents the interaction potential and q is a 2 × 2 skew-adjoint matrix
(see (6)).

The q of (2) is written as

q(x) =
∑

a

ga(x)σ̆a, a = 1, 2, 3, (3)

which we call an ‘imaginary quaternion’ [12]; ga(x) are given real functions, σ̆a := iσa , and
σµ (µ = 0, 1, 2, 3) are the Pauli matrices with the usual convention σ0 = 1,

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (4)

So, σ̆a have the following properties:

σ̆ †
a = −σ̆a, σ̆ 2

a = −1,

σ̆aσ̆b = −
∑

c

εabcσ̆c; a �= b, a, b, c = 1, 2, 3,
(5)

where σ † denotes the conjugate transpose (Hermitian conjugate) of σ , and εabc is the Levi–
Civita symbol. Hence, we ensure that

q†(x) = −q(x). (6)

A simplified form of (2) is

i∂t
�ψ = −∂2

x
�ψ − i[ge(x)ue + go(x)uo] �ψ, (7)

where ue,o are unit-length imaginary quaternions and ge,o(x) are even and odd functions,
respectively.

We note in passing that the ‘discrete version’ of (2) reads

i∂t
�ψ = −∂2

x
�ψ −

∑
j

iqj δ(x − xj ) �ψ, (8)

where {qj = q(xj )} (j : integer) is a sequence of imaginary quaternions. By convolution of (8)
with an appropriate kernel and for sufficiently dense partition {xj }, the resulting solution can
be arbitrarily close to the solution of (2). Because (8) is amenable to numerical computations,
we discuss the relevant solutions in detail in section 3.
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For later convenience, we introduce the Fourier transform in time of �ψ(x, t) by assuming
that this signal contains only positive frequencies. With the definition

�ψ(x, t) =
∫ +∞

0

dω

2π
e−iωt �φ(x, ω), (9)

the equation of motion (2) transforms to

ω�φ(x, ω) = −∂2
x
�φ(x, ω) − iq(x)�φ(x, ω). (10)

2.2. Impurity

Next, we analyze impurity on the basis of (2). The reduced density matrix ρ(t) for the memory
is the 2 × 2 matrix [11]

ρ(t) :=
∫ +∞

−∞
dx �ψ(x, t) �ψ †(x, t), (11)

which is obtained by tracing out the spatial variables. Of particular interest is the limit

M := lim
t→+∞ ρ(t), (12)

which is connected to the final memory state. For vanishing impurity, M2 = M and
tr(M2) = 1. In [11], the impurity measure is defined by

Imp(M) := [1 − tr(M2)]1/2. (13)

In this subsection, we describe the M of (12). For this purpose, we form the density
matrix

Q(x, t) := �ψ �ψ † =
[
ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

]
= −i

(
ir0σ0 +

∑
a

raσ̆a

)
=: −ir(x, t), (14)

where ψ∗
j is the complex conjugate of ψj , and the coefficients rµ (µ = 0, 1, 2, 3) are

r0 = 1

2
(|ψ1|2 + |ψ2|2), r1 = 1

2
(ψ1ψ

∗
2 + ψ∗

1 ψ2),

r2 = 1

2i
(ψ∗

1 ψ2 − ψ1ψ
∗
2 ), r3 = 1

2
(|ψ1|2 − |ψ∗

2 |2).
(15)

It follows that

ρ(t) = −i
∫ +∞

−∞
dx r(x, t) =: −im(t), m(t) :=

∫ +∞

−∞
dx r(x, t), (16)

M = −i lim
t→+∞ m(t) =: −imout. (17)

An important remark is in order. With r = ir0σ0 +
∑

a raσ̆a by (14), the dual of r is
defined by

rd := ir0σ0 −
∑

a

raσ̆a. (18)

By virtue of (15), we have

rrd =: 〈r, r〉 ≡ 0, (19)

4
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i.e., r is identified with a null hyperbolic quaternion [16, 18]; 〈·, ·〉 is the Minkowski inner
product by identifying r with the 4-vector (r0, r1, r2, r3). Note that m in (16) is an integral
of null quaternions. Because of the convexity of the characteristic cone [14], this integral
produces either a timelike (mmd < 0) or a null (mmd = 0) quaternion. This property ensures
that the 1 − tr(M2) in (13) is non-negative (see appendix).

We now derive an equation of motion for Q(x, t). With the system Hamiltonian
H := −1∂2

x − iq(x), (2) becomes i∂t
�ψ = H �ψ . By (3), we readily obtain

∂tQ = −i(H→ �ψ) �ψ † + i �ψ( �ψ †
←H

)
, (20)

where �ψ †
←H denotes the action of H on �ψ † from the left. Equation (20) is recast to the

conservation law

∂tQ + ∂xP = [Q(x, t), q(x, t)], (21)

where [Q, q] := Qq − qQ is the commutator of two quaternions and P is the ‘flux matrix’

P = 1

i
[(∂x

�ψ) �ψ † − �ψ(∂x
�ψ †)]. (22)

By (16) and (17), we need to integrate (20) over space and then time. Accordingly, we
obtain

	m := mout − min =
∫ +∞

−∞

∫ +∞

−∞
dt dx [r(x, t), q(x)] , (23)

where min := limt→−∞ m(t) is given. Consequently,

M = −i(min + 	m). (24)

It is convenient to rewrite 	m of (23) in terms of the appropriate Fourier transform.
Plancherel’s formula [22] and definition (14) give∫ +∞

−∞
dt r(x, t) =

∫ +∞

0

dω

2π
r̃(x, ω), (25)

where r̃(x, ω) is the quaternion corresponding to the frequency-domain density matrix
�φ(x, ω)�φ†(x, ω) by (9), i.e.,

r̃(x, ω) := i�φ(x, ω)�φ†(x, ω), (26)

assuming that the signals have only positive-frequency content. Thus, we have the formula

	m =
∫ +∞

0

dω

2π

∫ +∞

−∞
dx [̃r(x, ω), q(x)] . (27)

We note in passing that (27) can be formally generalized for higher space dimensions, where
�φ(x, ω) satisfies the vector Helmholtz equation.

We now restrict attention to pure initial memory states. The incoming vector field has the
product form

�ψin ∼ ψin(x, t)�sin, t → −∞, (28)

where ψin(x, t) is the incoming particle wavefunction and �sin is the initial memory state. For
example, we have [11]

ψin(x, t) =
∫ +∞

0

dω

2π
e−iωt−i

√
ω|x|f (ω) ·

{
1, even wave
sg(x), odd wave,

(29)

where sg(x) is the usual sign function, i.e., sg(x) = 1 if x > 0, sg(x) = −1 if x < 0 and
sg(0) = 0. The incoming quaternion min is [11]

min = 4
∫ +∞

0

dω

2π
|f (ω)|2√ω

(�sin�s†in
)
. (30)
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We view (30) as the general definition of f (ω) (without specifying any symmetry in x). By
analogy with (19), min satisfies

minmd
in = 0. (31)

Similarly, the condition tr(M2) = 1 (pure final memory state) corresponds to moutmd
out = 0.

So, pure states are described by null hyperbolic quaternions. This mapping is one to one, as
stated in proposition I below.

The frequency profile |f (ω)|2 in (30) is chosen so that mout is as close to null as possible.
We state the following proposition.

Proposition 1. The impurity measure (13) reads

Imp(M) =
√

2|〈mout, mout〉| =
√

2|2〈min,	m〉 + 〈	m,	m〉|, (32)

where 〈·, ·〉 is the Minkowski inner product defined in (19). (Thus, minimizing impurity is
equivalent to minimizing the Minkowski norm corresponding to mout.) In addition, zero
impurity is equivalent to mout being a null hyperbolic quaternion.

A proof of (32) follows directly from the definition of mout = iM and (13). We sketch
the main steps here (for details see appendix). By the representation of mout in terms of
the Pauli matrices we find |〈mout, mout〉| = det M. Recall that the impurity measure is
Imp(M) = √

2(det M) [11], and for a pure initial state we have 〈min, min〉 = 0.
Proposition I shows that definition (13) for Imp(M) is a natural choice: the deviation from

a pure state is expressed in terms of the ‘length’ of a hyperbolic quaternion. The impurity
can be obtained from (32) combined with (27), (26) and (30) once �φ is known. The reader is
referred to section 3 for details on �φ(x, ω).

2.3. Extension

In the case with a nonlocal interaction potential [8], the equation of motion is

i∂t
�ψ = −∂2

x
�ψ −

∫ +∞

−∞
dy iq(x, y) �ψ(y, t). (33)

The corresponding equation for Q = �ψ �ψ † is

∂tQ + ∂xP =
∫ +∞

−∞
dy { �ψ(x, t) �ψ †(y, t)q(x, y) − q(x, y) �ψ(y, t) �ψ †(x, t)}. (34)

If q(x, y) = qVα(x)Vβ(y) and Vα,β are scalar functions [8], integration of (34) yields

∂tm = [rV , q], (35)

where the quaternion rV is defined by

rV =
∫ +∞

−∞
dy Vβ(y) �ψ(y, t)

∫ +∞

−∞
dx Vα(x) �ψ †(x, t). (36)

3. General solution scheme

In this section, we describe the Fourier transform �φ(x, ω) of �ψ(x, t) by solving (10). We start
with (8), the discrete analogue of (2). The Fourier decomposition (9) reduces (8) to the form

ω�φ(x, ω) = −∂2
x
�φ(ω, x) −

∑
j

iδ(x − xj )qj
�φj , (37)

6
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where �φj := �φ(xj , ω). The general solution of (37) is

�φ(x, ω) = �a+(ω) ei
√

ωx + �a−(ω) e−i
√

ωx +
∑

j

iqj
�φjG(x − xj ), (38)

where �a± are reasonably arbitrary vectors and G(x, ω) is the Green’s function defined by

G(x, ω) = i

4
√

ω
(ei

√
ω|x| − e−i

√
ω|x|). (39)

By inspection of (38) and (39), �φ reads

�φ(x, ω) = �d+(x, ω) ei
√

ωx + �d−(x, ω) e−i
√

ωx, (40)

where only the values �d±(xj , ω) matter.
In principle, the coefficients �d± can be determined from the incoming wavefunction �ψin,

formula (28). In the limit t → −∞ we have [11]∫ +∞

0

dω

2π
�d±(x, ω) e±i

√
ωx−iωt ∼ ψin(x, t)�sin, t → −∞, (41)

where the upper (lower) sign is taken for x < 0 (x > 0). In particular, we set x → ∓∞
[11]. So, the last relation gives �d+(x, ·) if x < −M+ and �d−(x, ·) if x > M− for sufficiently
large M± by use of the Fourier transform of ψin, e.g. (29). In the following, we find �φ(x, ·)
everywhere via a scheme that determines �d±(xj , ω).

Next, we derive equations for �d±,j := �d±(xj , ω) on the basis of (37). For this purpose,
we introduce the four-component vectors

�d(x, ω) :=
[ �d+

�d−

]
, �a(ω) :=

[�a+

�a−

]
. (42)

Equation (38) reads

�dj = �a −
∑

k

sg(j − k)�k
�dk, (43)

where �dj := �d(xj , ω) and �j is the 4 × 4 matrix

�j := 1

4
√

ω

[
qj wj qj

−w∗
j qj −qj

]
, wj := e−2i

√
ωx. (44)

By taking differences in (43) we find the equation

(I + �j+1)�dj+1 = (I − �j)�dj , (45)

where I is the 4 × 4 unit matrix. By the identity (�j )
2 ≡ 0 we write (45) as

�dj+1 = (I + �j+1)
−1(I − �j)�dj = (I − �j+1)(I − �j)�dj . (46)

Let us assume that qj have finite range, i.e.,

qj ≡ 0, |j | > N, (47)

for some fixed positive integer N. Define

�dleft := �dj , j < −N, �dright := �dj , j > N, (48)

which are constants. By introducing the 4 × 4 matrices

Rj := (I − �j)

j−1∏
k=−N

(I − 2�k) , R :=
N∏

k=−N

(I − 2�k) , (49)

7
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we derive the relations

�dj = Rj
�dleft, |j | � N, �dright = R�dleft. (50)

By the summation form (43) we obtain the formulae

�dleft = �a +
∑

j

�jRj
�dleft, R�dleft = �a −

∑
j

�jRj
�dleft, (51)

by which we find the relations

I − R = 2
∑

j

�jRj , �a = 1

2
(I + R)�dleft. (52)

Thus, by (50), �dleft alone suffices to yield �φ(x, ω) in (38). With recourse to (41), the
incoming wavefunction �ψin furnishes immediately the 2 × 2 vectors �d+,left and �d−,right. By
writing

R =:

[
Ř1 Ř2

Ř3 Ř4

]
, (53)

where Řk are 2 × 2 matrices, and using (50) we find

�d−,left = Ř−1
4 (�d−,right − Ř3�d+,left). (54)

For the sake of simplicity, we assume that Ř4 is non-singular. The last relation completes the
calculation of the 4-vector �dleft. Thus, we arrive at the following statement.

Proposition 2. Equation (37), with qj ≡ 0 for |j | > N , is solved by (38) where �a given by
(52),

�φj = �d+,j ei
√

ωxj + �d−,j e−i
√

ωxj , (55)

and �d±,j are given by (50); �d+,left is determined by (41) and �d−,left is determined by (54).

The continuous analog of (43), which pertains to the solution of (10), is the Fredholm-type
integral equation

�d(x, ω) = �a(ω) −
∫ +∞

−∞
dy sg(x − y)�(y, ω))�d(y, ω), (56)

where the 4 × 4 matrix � is

�(x, ω) = 1

4
√

ω

[
q(x) w(x)q(x)

−w∗(x)q(x) −q(x)

]
, w(x) = e−2i

√
ωx. (57)

Differentiation of (56) leads to the Dirac-type equation

∂x
�d(x, ω) = −2�(x, ω)�d(x, ω). (58)

Note that the scheme underlying proposition II corresponds to solving (56) by iterations.
Because of the obvious connection of this scheme to the standard theory of integral equations
[23], we do not discuss (56) any further in this paper. Once �φ(x, ω) is known, Imp(M) can
be calculated via proposition I in section 2.2. In the following section, we apply proposition
II to a delta-function potential [8, 11].

The procedure of this section, which applies to the Schrödinger equation (2) with a local
interaction, can be extended to nonlocal interactions, equation (33), but the algebra is more
elaborate. In the following section, we consider the case where the kernel of the interaction
becomes a suitable pseudo-potential [8, 11].

8
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4. Point interaction

In this section, we revisit the theory of [11] in the context of the present formalism, particularly
of propositions I, II in sections 2.2, 3. For point interactions and a pure initial state of the
memory, we calculate the impurity measure and show that the scattering amounts to rotations
of quaternions in the frequency domain. We describe how a class of incoming finite-energy
pulses can produce small impurity.

4.1. Even wavefunctions

First, we consider the Schrödinger equation

i∂t
�ψ(x, t) = −∂2

x
�ψ − iqδ(x) �ψ(0, t), (59)

by which the particle interacts with the memory at the origin. We set

q = gu, ‖u‖ = 1, (60)

i.e., u is a unit imaginary quaternion; ‖u‖ := √〈u, u〉 in the Minkowski space. The incoming
wavefunction is assumed to be the even part of (29) [11].

By virtue of (27) and (32), the impurity is measured in terms of the quaternionic
commutator

	m =
∫ +∞

0

dω

2π
[̃r(0, ω), gu], (61)

where r̃(0, ω) is

r̃(0, ω) = i�φ(0, ω)�φ†(0, ω). (62)

We now apply the formalism of section 3, in particular proposition II. In the present
situation we have N = 0; the associated vector coefficients are �d−1, �d0 and �d1. By (49) there
is only one propagation matrix, i.e.,

R0 = I − �0 =
[

1 − g

4
√

ω
u − g

4
√

ω
u

g

4
√

ω
u 1 + g

4
√

ω
u

]
. (63)

Thus,

�dleft = �d−1 = (I + �0)�d0, �dright = �d1 = (I − �0)�d0. (64)

The introduction of the 2 × 1 vector �ds by

�d0 =:

[�ds

�ds

]
(65)

converts (64) to

�dj =
[�ds

�ds

]
− sg(j)

g

2
√

ω
u ·

[ �ds

−�ds

]
, j = −1, 0, 1. (66)

Vectors relevant to 	m of (61) are

�din := �d+,left =
(

1 +
g

2
√

ω
u
)

�ds, �φ(0, ω) = 2�ds. (67)

By (61), the entanglement quaternion 	m reads

	m = 4
∫ +∞

0

dω

2π

[
i�ds

�d†
s , gu

] =
∫ +∞

0

dω

2π

4g

p2
e−θu[i�din�d†

in, u
]

eθu, (68)

9
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where we conveniently defined the quaternion

p(ω) := 1 +
g

2
√

ω
u =: p eθu (69)

and applied the convention that the magnitude and phase are

p(ω) =
√

1 +
g2

4ω
, θ(ω) = arctan

(
g

2
√

ω

)
. (70)

We now simplify (68) by observing that dω/dθ = −(4/g)p2ω3/2 and

i�din�d†
in = |f (ω)|2tin, tin := i

(�sin�s†in
)
, (71)

where �sin is introduced in (29). Furthermore, we apply the identity

d

dθ
(e−θut eθu) = e−θu[t, u] eθu, (72)

where the operation e−θut eθu is a rotation which leaves the plane spanned by {σ0, u} invariant.
We can find two imaginary quaternions {v, w} that are orthogonal to u. Let Pu be the projection
onto the space spanned by {v, w}. Equations (68)–(72) entail

	m = −16
∫ +∞

0

dω

2π
ω3/2|f (ω)|2 d

dω
{e−θu(Putin) eθu}. (73)

Integration by parts yields

	m = 16
∫ +∞

0

dω

2π
e−θ(ω)u(Putin) eθ(ω)u(ω3/2|f (ω)|2)′, (74)

where the prime denotes differentiation with respect to ω.
A remark on (74) is in order. In the special case where Putin = 0, i.e. the incoming

quaternion tin is parallel to u, the potential is not ‘seen’ by the particle and 	m = 0. Then,
the memory is left at the same state producing zero impurity, Imp(M) = 0.

Example of small-impurity pulse. We proceed to describe how a class of incoming finite-
energy pulses can produce an arbitrarily small impurity. Such pulses have of course a narrow
spectrum sufficiently localized at a single frequency.

A simple case of pulses with finite energy is described by

(2π)−1ω3/2|f (ω)|2 = H(ω − ω0) − H(ω − Kω0), K > 1, ω0 > 0, (75)

where H is the Heavyside function (H ′(ω) = δ(ω)) and (ω0,K) are given parameters. The
amplitude |f (ω)|2 is scaled by 4

∫ +∞
0 dω|f |2√ω so that the total pulse energy is fixed to unity.

This normalization will be carried out in the impurity measure Imp(M) below. In view of
(74), we compute

	m = 16
(
e−θ1uPutin eθ1u − e−θ2uPutin eθ2u), (76)

where

θ1 = arctan

(
g

2
√

ω0

)
, θ2 = arctan

(
g

2
√

Kω0

)
; 0 < θ2 < θ1 <

π

2
. (77)

Note that the operation e−θuPutin eθu rotates Putin by −2θ .
With regard to min, by (30) we compute

min = 4

(∫ +∞

0

dω

2π
|f (ω)|2√ω

)
tin = 4 ln(K)tin. (78)

10
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We note that 	m lies in the plane spanned by {v, w} which is orthogonal to {1, u}. Substituting
into (32) and normalizing properly we find that the impurity measure equals

Imp(M) = 4

√∣∣4{1 − cos(2θ1 − 2θ2)} + ln(K){cos(2θ1) − cos(2θ2)}
∣∣

(ln K)2
. (79)

The right-hand side of this expression vanishes only for K = 1, but becomes arbitrarily small
if K − 1 � 1. In this limit,

Imp(M) ∼
√

2

3

g/(2
√

ω0)

ω0 + g2/4
(	ω), 	ω := |K − 1|ω0. (80)

The behavior Imp(M) = O(	ω) as 	ω → 0 is expected to be generic for any incoming
pulse wavefunction that has spectrum sufficiently localized at ω0 with support (bandwidth) of
size 	ω. The precise prefactor that enters the formula for Imp(M) depends on the specifics
of the pulse spectrum.

4.2. Odd wavefunctions

Next, we turn our attention to the equation [8, 11]

i∂t
�ψ = −∂2

x
�ψ + iqδ′

p(x)

(∫ +∞

−∞
dy δ′

p(y) �ψ(y, t)

)
, (81)

where δ′
p(x) denotes δ′(x) modified to remove any discontinuity at x = 0 from the

function on which it acts [8]: δ′
p(x)g(x) := δ′(x)[1 − limx→0+ ]g(x) for x > 0 and

δ′
p(x)g(x) := δ′(x)[1 − limx→0− ]g(x) for x < 0. For simplicity we write

�ψx(0, t) =
∫ +∞

−∞
dy δ′

p(y) �ψ(y, t). (82)

The incoming wavefunction is assumed to be the odd part in (29) [11]. The Fourier transform
in t of (81) gives

ω�φ = −∂2
x
�φ − iqδ′

p(x)�φx(0, ω). (83)

By proposition I in section 2.2 and equation (23), the entanglement quaternion reads

	m =
∫ +∞

−∞
dt[n(0, t), q], (84)

where

n(0, t) := i �ψx(0, t) �ψ †
x(0, t). (85)

By use of the Fourier transform of �ψ(x, t), we have

	m =
∫ +∞

0

dω

2π
[̃n(0, ω), q], ñ(0, ω) = i�φx(0, ω)�φ†

x(0, ω). (86)

The solution of (83) reads

�φ(x, ω) = �a+(ω) ei
√

ωx + �a−(ω) e−i
√

ωx + iqGx(x, ω)�φx(0, ω), (87)

where Gx is the derivative of the Green’s function (39), i.e.,

Gx(x, ω) = − 1
4 sg(x)(ei

√
ωx + e−i

√
ωx). (88)

Note that the pseudo-potential δ′
p gives zero when it acts on Gx [8]. Thus, applying δ′

p on (87)
yields

�φx(0, ω) = i
√

ω{�a+(ω) − �a−(ω)}. (89)

11
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Substitution of (89) into (87) with �d = (�d+, �d−)T leads to the formula

�d(x, ω) =
[

1 + g

4 sg(x)
√

ωu − g

4 sg(x)
√

ωu
g

4 sg(x)
√

ωu 1 − g

4 sg(x)
√

ωu

] [
�a+

�a−

]
. (90)

According to the imposed antisymmetry, we introduce the 2 × 1 vector �da in[�a+

�a−

]
=

[ �da

−�da

]
. (91)

Thus, we have

�d+(x, ω) =
{

1 +
g

2
sg(x)

√
ωu

}
�da,

�d−(x, ω) = −
{

1 − g

2
sg(x)

√
ωu

}
�da.

(92)

Furthermore, by (87),

�φx(0, ω) = 2i
√

ω �da. (93)

The vector �din corresponding to in-states can be �d−(+∞, ω) or �d+(−∞, ω); compare to
(41). For example,

�din(ω) =
(

1 − g

2

√
ωu

)
�da. (94)

Hence, by analogy with section 4.1 it makes sense to define

1 +
g

2

√
ωu =: p(ω) eθu, (95)

where

p(ω) =
√

1 + ωg2/4, θ(ω) = arctan

(
g

2

√
ω

)
. (96)

Equation (86) for 	m becomes

	m =
∫ +∞

0

dω

2π
ω

4g

p2
eθu[i�din�d†

in, u
]

e−θu. (97)

The assumption for a pure initial state amounts to using i�din�d†
in from (71), i.e. i�din�d†

in =
|f (ω)|2tin, where tin = i�sin�s†in and �sin is introduced in (28). Note that

dω

dθ
= 4

g

√
ωp2. (98)

Thus, by analogy with the symmetric case (section 4.1) we find the formula

	m = 16
∫ +∞

0

dω

2π
{eθ(ω)u(Putin

)
e−θ(ω)u}(ω3/2|f (ω)|2)′. (99)

The impurity Imp(M) follows by the procedure of section 4.1.

Example of small-impurity pulse. A simple example of an incoming pulse wavefunction is
described again by (2π)−1ω3/2|f (ω)|2 = H(ω − ω0) − H(ω − Kω0). The analysis for
the impurity follows the steps of section 4.1 and is omitted here. Equation (79) should be
recovered, where the angles θ1 and θ2 are now defined by

θ1 = arctan

(
g
√

ω0

2

)
, θ2 = arctan

(
g
√

ω0K

2

)
; 0 < θ1 < θ2 <

π

2
. (100)
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5. Conclusion

We introduced a general formulation of the nonrelativistic scattering from a two-state quantum
memory in one-space dimension. The key feature is to view the interaction potential as an
imaginary quaternion. In the case with point interactions, scattering from the memory amounts
to a rotation in the frequency domain of an appropriately defined incoming quaternionic state.

We described the time evolution of the (entanglement) reduced density matrix in terms of
the space integral of appropriate quaternionic commutators. By identifying quaternions with
4-vectors we point out that, because of the space integration, the quaternions involved in the
entanglement evolution are timelike. Accordingly, the impurity measure for the final memory
state is described by a time-integral containing the Minkowski norm of timelike, hyperbolic
quaternions. In the special case of narrow-band pulse wavefunctions, the resulting impurity
Imp(M) is generically of the order of the pulse bandwidth.

Our model based on scattering of particles from the memory differs from standard
models where memory states correspond to quantum spins (‘qubits’), e.g. [24, 25]. The basic
difference lies in the fact that memory states in our formulation do not transform unitarily.
Decoherence in our framework results from memory operations and not from unwanted
couplings with the environment or dephasing noise [25]. However, our use of quaternions in
the time-dependent Schrödinger equation with two coupled channels brings forth a geometric
interpretation of scattering which is analogous to the action of the Lorentz group on qubit
states [24]. Further study of this analogy is the subject of future work.

Our approach can be useful for addressing several questions. It is tempting to study
rigorously successive scatterings from a quantum memory modeled by point interactions.
This case is discussed for small impurities in [26] where it is concluded that impurities add up
over a sequence of scatterings. The incoming states may not be pure but incoming quaternions
are successively rotated in an appropriate sense in the frequency domain. An interesting
question is how impurity is changed generally by this process. It is expected that Imp(M)

always increases, especially if Imp(M) is thought of as ‘entropy’ in a sense [27]. There is no
rigorous justification of this claim at the moment. The connection of Imp(M) to interference
effects critical to quantum computing such as those discussed in [28] was not addressed by
our analysis.

Another possible extension is the case of a n-state memory. A related issue is to define
the appropriate algebra of n × n matrices that describe scattering in this context.

Finally, it is interesting to consider relativistic massive particles within the present
framework. A starting point would be the case of particles with spin 1/2. A perhaps naive
model problem is the one-dimensional scattering from a two-state memory in the setting of
Dirac’s equation. In this case, the particle-memory system is described by a 8× 1 vector field.
The study of this process by use of an analogous formalism is the subject of future work.
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Appendix. Proof of proposition I

In this appendix, we prove proposition I of section 2.2. In particular, we show that an arbitrary
null quaternion can be written as a tensor product of the form �ψ �ψ †. Furthermore, we show
that the impurity measure Imp(M) is given by (32).
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Suppose we have the null quaternion

r = ir0σ0 +
3∑

a=1

raσ̆a, (A.1)

and let us write �r := (r1, r2, r3) for the space vector. The ‘nullity’ property means that
(r0)2 = |�r|2; we normalize so that r0 = 1/2. The nullity is invariant under scaling. So, if we
set h = 2r we have that h is also null with h0 = 1 and |�h| = 1. An appropriate stereographic
projection can identify the unit vector �h with the complex number

z := h1 − ih2

1 − h3
. (A.2)

The inversion of this mapping yields

r1 = (z + z∗)/2

1 + zz∗ , r2 = − (z − z∗)/2i

1 + zz∗ , r3 = (zz∗ − 1)/2

1 + zz∗ . (A.3)

The substitution z := z1/z2 into (A.3) where |z1|2 + |z2|2 = 1 gives

r0 = (z1z
∗
1 + z2z

∗
2)/2, r1 = (z1z

∗
2 + z∗

1z2)/2,

r2 = (z∗
1z2 − z1z

∗
2)/2i, r3 = (z1z

∗
1 − z2z

∗
2)/2.

(A.4)

These relations show that an arbitrary null quaternion can be written as the tensor product
�ψ �ψ † where

�ψ :=
[
z1

z2

]
, |z1|2 + |z2|2 = 1. (A.5)

Next, we show formula (32) for Imp(M). By setting M = −ir, it is straightforward to
calculate

r2 = (−(r0)2 − |�r|2)σ0 + 2ir0
∑

a

raσ̆a. (A.6)

By invoking the algebra of the Pauli matrices, we find

1 − tr(M2) = 2[(r0)2 − |�r|2] = −2(rrd), (A.7)

so that

Imp(M) =
√

2
√

|rrd | =
√

2
√

|〈r, r〉| =
√

2‖r‖, (A.8)

which confirms (32) of proposition I in section 2.2. In the above, r = (r0, r1, r2, r3) is a
four-component vector and < ·, · > is the Minkowski inner product.
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